課程資訊
課程名稱
衍射光學與全像影像術
Holographic Imaging and Diffractive Optics 
開課學期
108-1 
授課對象
醫學院  醫療器材與醫學影像研究所  
授課教師
駱 遠 
課號
MDI7011 
課程識別碼
458 M0200 
班次
 
學分
2.0 
全/半年
半年 
必/選修
選修 
上課時間
星期五7,8(14:20~16:20) 
上課地點
基醫1222 
備註
上課教室: 新物833與藍明光合授
總人數上限:2人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1081MDI7011_luo 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

This course describes the nature of holographic and lithographically formed diffraction volume/thin gratings and necessary tools for their design and analysis. Course topics include a description of the interference and Fourier relations that determine the amplitude of diffracted fields, analysis of volume gratings, and properties of holographic recording materials, binary gratings, and analysis of applications of holography including bio-imaging and data storage, fiber Bragg gratings, and polarization control elements.
( This class can complement the courses of Optics (光學導論) and Advanced Bio-Optical Microscopy (高等生物光學顯微術). )

上課地點: 新物833 

課程目標
本課程將介紹光學醫學影像技術,著重衍射光學與全像影像術的設計與理論,此課程會將光學導論延伸至高等生物光學顯微術的實際應用。上課期間,也將有部分光學影像實驗demo. 
課程要求
大學物理 化學 微積分 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
The book by Goodman is highly recommended and a book by Psaltis is a good review.

(1)Goodman, J.W. (2005). Introduction to Fourier Optics, (3rd ed.). McGraw Hill

(2)Coufal, H., Psaltis, D., and Sincerbox, G. (2000). Holographic Data Storage. Springer. 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
9/13  Basic concepts and introduction of terminology(1) Overview of applications of holography(2) Differences between holographic and lens imaging(3) Absorption and phase modulation(4) Thin and thick gratings(5) Transmission and reflection gratings (*HW1 uploaded; 上課地點 物理系 rm 
Week 2
9/20  (1) Principles of holographic recording and reconstruction (2) Phase conjugation and time-reversed wave.  
Week 3
9/27  Fourier analysis of gratings, including (1) review of Fresnel diffraction and Fraunhofer formulas, (2) diffraction patterns from apertures, and (3) Fourier analysis of absorption and phase gratings. (HW2 uploaded) 
Week 4
10/04  Fourier analysis of gratings, including (1) review of Fresnel diffraction and Fraunhofer formulas, (2) diffraction patterns from apertures, and (3) Fourier analysis of absorption and phase gratings. 
Week 5
10/11  Details of (1) lens pupil transmittance, and (2) Fourier transform after light passing through a lens. (HW  
Week 6
10/18  Image analysis of holograms includes: (1) exact ray tracing, (2) paraxial ray tracing, and (3) aberration of holographic lenses. (Related paper uploaded) 
Week 7
10/25  Image analysis of holograms includes: (1) exact ray tracing, (2) paraxial ray tracing, and (3) aberration of holographic lenses. 
Week 8
11/01  Midterm presentation 
Week 9
11/08  Midterm quiz 
Week 10
11/15  Tackle of midterm quiz 
Week 11
11/22  Introduction of (1) coherence properties, (2) Young’s interferometer, and (3) Analysis of coherence 
Week 12
11/29  Introduction of (1) coherence properties, (2) Young’s interferometer, and (3) Analysis of coherence 
Week 13
12/06  Guest lectures (UA Prof. Barton+ MIT Prof. Peter So) 
Week 14
12/13  (1) Introduction of Bragg condition & detuning parameter, (2) derivation of Kogelnik's theory, and (3) introduction of transmission/reflection volume holograms. (HW#5 uploaded) 
Week 15
12/20  Principles of transmission and reflection volume holograms: (1) lossless dielectric, (2) lossy, and (3) absorption gratings. 
Week 16
12/27  Original Kolgenik paper & HW 6 have been uploaded